
A Middleware for Model-Based Embedded Systems
Wolfgang Haberl Jan Birke

Institut für Informatik
TU München

85748 Garching, Germany

Uwe Baumgarten

Abstract—To deal with the increasing complexity of embedded
real-time systems the model-driven development approach has
proven to be beneficial. The reduction of complexity achieved by
the used models, which are often implemented using a graphical
modeling language, results in less faulty systems.

For model-driven development to be effective, the possibility
of human faults has to be kept as small as possible. This
goal can be reached by utilizing automatic code generation
and is hence already employed in production today. Tools like
Matlab/Simulink or ASCET-SD are examples of such efforts.

Yet those tools lack the possibility of designing not only
parts, but specifying complete systems and generating code
as well as configuration data for the overall application. The
Component Language (COLA) [1] is intended to fill this gap.
While generating application code for COLA models is similar to
the mentioned tools, the code shall be deployed onto a distributed
system with as less manual interaction as possible.

To enable for unattended deployment and efficient modification
of the generated system, a transparent communication layer
is desirable. In this paper we present a middleware approach
intended for use in automatic system deployment for COLA.
Besides transparent communication the presented middleware
features additional services to the application like a clock
synchronization mechanism, storage of task states and more.
The details about the middleware’s realization and its use for
a model-driven process are described in the paper at hand.

Index Terms—Distributed embedded systems, real-time sys-
tems, model-driven development, middleware

I. I NTRODUCTION

With the increasing usage of embedded systems in consumer
products, these systems are responsible for the quality of those
products as well as for their failures. Today, an embedded
system often is a networked system consisting of many nodes,
for example avionic systems, automotive systems and many
more. Actual premium cars are likely to use several different
bus types (e.g. CAN, Flexray, MOST, LIN, ...) connecting up
to 80 controllers as described for example by Broy [2].

Due to the number of produced units, costs are considered
a very important factor when choosing hardware. This leads
to limited processing capacities of the system. The use of
performance consuming code, like richly featured network
stacks, is often omitted in favor of less computing power
consumption. In many cases this leads to hard coding of node
addresses in the communication calls used in application code.

As the built systems, for example for automotive appli-
cation, are static throughout system lifetime, regarding the

number of nodes and applications, this approach is considered
adequate. But in case of a failure during system specification
or programming, the impact on the system can be rather huge.
In the worst-case, the change of an address can mean that
software for all nodes has to be replaced, as the addresses are
statically compiled in. Replacing the software for all nodes in
the system is a time consuming and thus expensive procedure,
especially if necessary for lots of produced units.

This effort can be reduced by replacing the static communi-
cation calls by a middleware layer. The applications are then
programmed using the middleware API and logical addresses.
Mapping these logical to hardware addresses is done at run-
time. Thus, if a communication link has to be changed, it
is sufficient to revise the mapping done by the middleware.
Additionally the middleware masks the heterogeneousity of
the underlying communication system and can offer additional
services like, for example, clock synchronization.

Additionally the use of logical addresses and a static
communication API eases the automatic generation of code
and configuration of the overall system during a model-
driven development process. The technique of model-driven
development has become very popular during the last years,
as it decreases the degree of complexity presented to the devel-
oper. Graphical programming languages, like the Component
Language (COLA) employed for examples throughout this
paper, are a commonly used concept to achieve this goal.

The middleware approach presented in this paper is intended
as a platform for embedded real-time systems generated from
synchronous data-flow models.

A. Related work

With the emerging interest in distributed embedded sys-
tems, several approaches for embedded middleware have been
presented. Many of those implementations rely on an object
request broker (ORB) looking up communicating software
components during runtime, as proposed by the CORBA
specification [3]. Examples for such approaches have been
published for example by McKinnon et al. [4], Schmidt [5],
Subramonian et al. [6] or in combination with the CoSMIC
tool [7]. In comparison to these proposals, our approach saves
computation time by abandoning the use of an ORB.

The presented middleware is intended for use with the
Component Language (COLA) [1]. This graphical modeling
language for embedded real-time systems features constructs



similar to those of Matlab/Simulink [8] or Lustre/SCADE [9].
Compared to these languages, it offers the benefit of formal
semantics and the concept of operating modes respectively.
Modes are modeled using mode automata similar to those
proposed by Maraninchi et al. [10]. COLA is intended for
the design not only of single software components or appli-
cations, but of complete systems. This bears the advantage
of knowledge about the interaction of the modeled software
components at runtime. Consequently every communication
link needed is present in the model. Thus an object broker is
redundant. The configuration of the middleware can instead
be calculated offline.

B. Contribution

The presented middleware approach facilitates the unat-
tended deployment of data-flow models onto distributed em-
bedded real-time systems. Compared to existing approaches,
it operates without looking up software components during
runtime, thus saving a notable amount of computing time.
Rather communication dependencies are extracted from the
given data-flow model and the middleware is set up accord-
ingly, using configuration files. This concept enables for offline
(re-)configuration, e.g., when coding or updating software
components of the system, as well as it leaves open the
possibility of reconfiguration during runtime. Examples for the
generated application code are presented in the paper.

C. Organization

The remainder of the paper is organized as follows: The
peculiarities of synchronous data-flow languages, and espe-
cially that of COLA which is used as example throughout the
paper, are described in Section II. In Section III we will give a
short introduction into the challenge of unattended deployment
of data-flow models. Section IV describes the concepts for
predictable and timely transmission of data in a real-time
environment. We will detail on the realization of the presented
concepts in Section V and will give a conclusion and look-out
in Section VI.

II. DATA -FLOW MODELS

The presented middleware was designed to be part of
an execution platform for software tasks modeled using a
synchronous data-flow language. Examples for such languages
are Lustre or COLA [1]. For Lustre an approach for modeling
and deploying systems has been presented in [11]. In contrast
to the concepts of Lustre, the COLA language features the use
of modes, which embody the execution of alternative sets of
tasks. COLA modes are realized using automata as described
in Section II-B.

The use of modes allows for ease of modeling of large
systems, as presented by Bauer et al. [12]. At the same time
they cater for the generation of efficient system configurations,
as a mode clearly defines the set of tasks to be executed
during its activation. Thus no processing time is wasted for
the execution of tasks, whose results are not of interest in that
mode.

A. Synchronous data-flow

The termsynchronousresembles to the hypothesis of perfect
synchrony described by Berry and Beneviste [13] and which
is assumed for the temporal semantics of Lustre as well as
for COLA. According to this hypothesis, the computation of
the modeled tasks and communication between them happens
infinitely fast. This allows for a discretization of the timebase.
Thus time is not any longer seen as a continuous value, but
a progression of distinctticks. Each of these ticks triggers
the execution of the modeled tasks. And, as mentioned, these
tasks are instantly computed and return their results. Thispro-
cedure is repeated cyclicly during runtime. The time-triggered
paradigm is well suited to realize such a periodic execution
of tasks. This conforms to the model semantics as long as the
call period is longer than the deadline specified for each task
and data-dependencies are considered. The principles of an
architecture for a time-triggered system have been introduced
by Kopetz [14].

As the stated assumption of zero delay cannot be fulfilled
by a real system, special care is required to approximate the
model’s semantics as closely as possible. We will go into the
details of this problem in Section IV.

B. COLA

We will exemplify our middleware approach using the
modeling language COLA throughout this paper. A COLA
model consists of software components communicating via
directed communication links, calledchannels. The compo-
nents are namedunits. In COLA several forms of units are
defined (cf. [1]). Units of the typesnetwork and automaton
may be decomposed hierarchically, that means, networks are
made up of several sub-units connected via channels, and an
automaton’s behavior in a certain state is implemented using
a unit as well. Automata provide a form of control-flow to
the COLA language. An automaton decides, depending on its
input values, which state to activate. Hence only one of the
units implementing its states can be active at a time.

This characteristic of automata can be used to define the
behavior of the system in a certain operating mode, for
activation and deactivation of a system feature. Figure 1
shows a sample COLA automaton, which denotes that the
two modes are changed each time themode input signal,
possibly generated by pushing a button, is set to 1. The feature
referred to in the figure is a fictitious adaptive cruise control
(ACC) which will be used as example throughout this paper.
This device is intended to keep a car at constant speed, while
maintaining a minimum distance to cars running ahead.

Besides the mentioned modeling constructs, COLA uses
basic arithmetic and logical operators, calledfunctional blocks,
for the implementation of the desired functionality. As stated
before, a synchronous data-flow model is executed periodi-
cally. In order to buffer values from one invocation to the next,
COLA provides atiming blockcalleddelay. A delay can store
a single value for exactly one tick of the model time.

Data are put into and out of the system usingsourcesand
sinks. These elements are the model representation of sensors



<atm_acc_on_off>

mode==1

mode==1

net_acc_offnet_acc_on

Figure 1. COLA mode automaton for an ACC

and actuators of the system in question.
As the actual state of automata as well as the values

stored in delays have to be preserved, each unit containing
these constructs is stateful. The storage of these values is
realized by the presented middleware approach, as described
in Section III-A.

C. COLA clusters

When the functional design of the COLA software model
is finished, the units are sectioned into distinct groups. These
groups are calledclustersand form the model representation
of an executable task. Thus each cluster is transformed into
one file of C-Code during code generation, as described by
Haberl et al. [15]. When defining clusters on a hierarchy level
lower than the system’s top-level unit, the clusters’ parent
unit(s) lack the mapping to a software task. In order to cover
the functionality of these parent units, they are inserted into
one or more so calledmode cluster. All other clusters are
referred to asworking clusters. The mode cluster’s job is to
decide on which mode, and thus which working clusters, shall
be executed. An example for such a clustering is given in
Figure 2. The figure shows the top-level network of the ACC
example to be sectioned into twelve clusters. While the clusters
c1 throughc11 are working clusters,c12 is intended to be
a mode cluster. It is implemented by the automaton shown in
Figure 1. The units implementing the automaton’s states are
two additional working clusters. We will show some examples
of the code generated for the ACC example in Section V-A.

For a clustering to be valid, all units must be contained in a
cluster and each mode cluster must consist of COLA automata
exclusively.

In a COLA model, units exchange data using channels. The
inter-cluster communication is also given by these channels.
Each channel which connects units mapped to different clus-
ters, implies a need for communication between these clusters.
This holds for all channels, that is the edges connecting the
clusters, depicted in Figure 2. It is one of the tasks of the
middleware to enable for this communication.

III. M IDDLEWARE FUNCTIONALITY

We will give a short introduction into the middleware’s
functionality in this section. For detailed information about
the realization of the described concepts see Section V-A.

 

<net_ACC>

c10

c11

net_ACC_on_off

net_rotation

net_radar

net_ui

DEV_S_

TOUCH

DEV_S_

PRGM

DEV_S_

ROTATION

DEV_S_

SYSTIME

DEV_S_

ULTRA

DEV_S_

VIEW

DEV_A_

MOTOR

DEV_A_

DISPLAY

c1

c2

c3

c4

c5

c6

c9

c8

c7

c12

Figure 2. A possible clustering for the ACC example

A. Local and remote communication

A basic function of each middleware is the provision of
communication mechanisms. For a clustered COLA model
this includes inter-cluster communication. The border lines
separating clusters are crossed by communication channels.
Each such channel indicates a need for data exchange at
runtime. This is one of the duties of our middleware. Every
channel is assigned a virtual address, which is inserted into
the appropriate middleware read and write calls during code
generation. The middleware distinguishes between local and
remote communication, according to the placement of sender
and receiver. This information is taken from the configuration
data generated for each node.

Besides enabling for communication between tasks, the
middleware also provides data keeping for each stateful task.
Synchronous modeling languages assume tasks to be executed
periodically. In COLA tasks containing either a delay or an
automaton are stateful. This state is kept by the middleware
between the periodic invocations of the task. The needed mid-
dleware API calls are, again, inserted during code generation.

B. Operation modes

As mentioned before, COLA allows for the definition of
operating modes. Eachmode clustertriggers a set of clusters,
which we callworking cluster, to be executed. During code
generation all clusters are transformed into executable tasks.
Hence, the activation of a mode, and all of its sub-modes,
is calculated by a task as well. We call such a task a
mode-task. Like all working tasks, mode-tasks have to be
executed and consequently use the communication abilitiesof
the middleware. Compared toworking tasks, mode-tasks do
not write any actuators directly, but calculate a value, which
indicates their decision on the mode to be activated. As the
middleware is the first instance to know about the result of
the mode-task, it is responsible for calling all working tasks
activated by that mode. This minimizes the delay between the
decision on the active mode and the execution of the first
working task.



C. Hardware interaction

In COLA several channels can be connected to a single
output of a unit. If this unit is a source this indicates the value
of a sensor to be used by two different software components.
Following the synchronous semantics of COLA, both soft-
ware components have to be provided with the same value.
Additionally the hypothesis of perfect synchrony assumes the
complete system to be executed in virtually no time. Thus if
several sources are read or actuators are written, semantics
claim this to happen instantly. If hardware would be accessed
directly by each task, this requirement couldn’t be fulfilled,
as tasks have to be executed sequentially on each node of the
system.

To approximate the model semantics as closely as possible,
we chose to realize hardware interaction via the middleware.
As the middleware uses a last value semantics, sensor values
can be read several times by different tasks. Each task will
then read the same value. By running all sensor reads at the
begin and all actuator reads at the end of each scheduling
cycle, the moments of reading or writing the values are as
closely synced as possible. Figure 3 shows this invocation of
sensors, tasks and actuators during a scheduling cycle.

scheduling cycle

read sensors write actuatorsCOLA tasks

middleware
running

middleware
running

applications
running

Figure 3. Hardware interaction

D. Global time

The realization of a time-triggered system relies on the
availability of a global time, as described by Kopetz [16]. This
global time is used to start computation and communication on
the different nodes according to a globally defined schedule.
Our middleware API contains a function providing access to
the global time. This function can be used by the node local
dispatcher to initiate execution of the different tasks.

IV. REAL-TIME ENVIRONMENT

The middleware is designed to offer communication ser-
vices for distributed hard real-time systems. Such a real-time
system consists of several processing units equipped with a
processor, memory, a communication interface, and interfaces
to interact with the environment. A unit with its dedicated
hardware is called a node of the real-time system.

On each node several tasks can be executed. The interaction
of local and remote tasks realizes the functionality of the
system. In a real-time environment it is essential that tasks
finish execution within time, otherwise the produced results
could be useless or even lead to failure. Tasks compete
for limited computational resources provided by a node, but
because of the a priori knowledge of task periodicities, time
static scheduling can be employed to meet deadlines.

A. Communication network

Bus access to the communication network connecting the
nodes of the system is controlled using a time division multiple
access (TDMA) strategy. That means, access to the network
is divided into time slots. In each time slot only one node
is allowed to send data, all others may receive data during
that time. All slots together define the TDMA cycle. Figure 4
shows such a cycle, divided into five slots. Each node can
be assigned multiple slots, one for each task it executes. An
example for this is shown in Figure 4 where two slots are
reserved for node 0. The TDMA cycle is repeated periodically
and should be chosen as long as it takes for the slowest node
to finish execution of all tasks. This allows for the definition
of a system wide scheduling cycle. Tasks which have to be
executed more frequently can be involved several times during
each cycle.

Slot 0 Slot 2 Slot 3Slot 1 Slot 4

TDMA
cycle

Node 0
Task 0

Node 0
Task 1

Node 2
Task 0

Figure 4. TDMA scheme

Two approaches for allocating time slots can be thought of.
One possibility is that each node in the system is assigned one
time slot in each TDMA cycle, in which the node is allowed to
send data. The length of that time slot either depends on how
much data has to be sent by that node or the available amount
of time is simply divided by the number of communication
nodes.

Another approach of distributing slots would be to assign
a time slot to every task. This leads of course to more slots
in a cycle and a longer cycle time, but the delay between
finishing a task execution and distributing the produced data
can be shortened. Therefore task scheduling and TDMA time
slots have to be aligned to minimize distribution delay, shown
in Figure 5. For our middleware the latter option of assigning
slots to tasks rather than to nodes is chosen due to it’s greater
flexibility in generating schedules and advantages considering
delay.

A protocol entitled Time Triggered Protocol(TTP) and
similar to the TDMA scheme used for our middleware has
been proposed by Kopetz [17]. Compared to the middleware
presented here, the TTP assigns TDMA slots to nodes, not
applications. In addition, the number of operating modes used
in a system running the TTP is limited to eight instances. The
approach presented here doesn’t limit the number of modes
(neglecting the fact, that the number of logical addresses is
limited by the chosen data type).



task 1 execution

task 1 

TDMA slot

time

delay

Figure 5. Delay between task termination and data distribution

B. Time-triggered / event-triggered messages

There are two established approaches in real-time systems
design, namely the time-triggered and the event-triggeredone.
A time-triggered real-time system initiates actions like sending
messages by the progression of time. The points in time when
some action has to be carried out are defined offline and
take place periodically. Event-triggered systems on the other
hand do not have such static schedules. They observe the
environment and actions are triggered by the occurrence of
some special event. Therefore event-triggered systems require
dynamic scheduling because the event occurrences cannot be
known a priori. Primarily the middleware is designed to handle
time-triggered messages. These periodic messages occur in
every cycle, their size is known a priory. So enough time
in the TDMA cycle can be reserved to ensure successful
transmission.

For the deployment of COLA models a time-triggered
approach is preferred, as the perfect synchrony assumption
implies the periodic invocation of all tasks in the system
at discrete points in time. This matches the time-triggered
paradigm well, which is also based on the cyclic activation
of tasks.

But in some cases it may also be convenient to send a
message because of a special event, for example to realize
some monitoring in case of errors. The occurrence of such
a message is exceptional, so the message is not assigned a
designated time slot. In order to allow a limited number of
such event-triggered messages, an extra default time slot for
each node is defined. All messages that are not planned a
priori, and hence do not have a time slot assigned, are sent in
this event-triggered slot.

ET slot 1 slot 1 ET slot 2slot 3slot 2 slot 5 slot 6

TDMA cycle

task 1 task 4task 3task 2

TDMA slots

tasks node 1

task 2task 1 tasks node 2

Figure 6. Scheduling of tasks on different node

Figure 6 presents an example how slots and tasks could be
aligned. In the shown case time-triggered messages of task 1
would be delayed until the cycle reaches slot 1, but event-
triggered messages could be delivered immediately. On the
other hand, time-triggered messages of task 3 can be sent
contemporary, event-triggered messages would have to wait

about a half cycle time. Task 4 has to wait in either case,
because the slots passing at execution time belong to node 2.

Note that TDMA slots cannot be shared between nodes.
Each node that has to send event-triggered messages has to be
provided with an own event-triggered time slot. If no event-
triggered communication occurs, these slots lie idle.

V. OPERATION OF THE MIDDLEWARE

For transmitting data the middleware does not rely on bus
addresses of sender or receiver node. Instead every datum
is assigned a unique numerical identifier used as its logical
address. When a datum has to be transmitted to other nodes,
it is passed to the middleware in combination with its logical
address. Using this identifier, the middleware can determine
which TDMA time slot has to be used for sending. As the
TDMA cycle reaches the determined time slot, the datum with
its identifier is broadcasted over the network. The receiving
nodes store the received datum with the identifier as its key.
Already existing data with the same key are replaced with
the received data. Tasks on the receiving nodes are now able
to retrieve the datum from the middleware by passing the
identifier.

The configuration for each node’s middleware instance is
achieved by reading a configuration file during start-up.

Network

Middleware Middleware

task 1 task 2 task 5 task 6

send ID42 receive ID42 receive ID42 receive ID42

node 1 node 2

broadcast ID42
receive broadcast

Figure 7. Send and receive data using the middleware

The scheme of two nodes communicating is shown in
Figure 7. Task 1 on node 1 sends data with identifier 42. The
data is stored in the middleware, task 2 on the same node has
immediate access. After the broadcast (which might be some
time later), the tasks on node 2 also have access to the data
sent by task 1.

A. Middleware API

To achieve a small and simple API, the middle-
ware only provides the basic functionsmw_send() and
mw_receive(). The data to send or receive is identified by
the logical address passed to the function as first argument.
The second argument is a pointer to a variable the data are
read from or written to. An example for the application of
these calls is shown in Listing 1, which depicts the code for
working clusterc8 of Figure 2. In lines 6 and 7 of the listing



the two input channels are read, while the result is written to
the output channel in line 10.

Reading and storing a tasks state is realized by
using the calls mw_restore_task_state() and
mw_save_task_state(). The usage of these calls is
shown in lines 5 and 11 in the listing. The functions’
arguments are identical to those ofmw_send() and
mw_receive().
1 void net_rotation200399()
2 {
3 state_rotation200399 unit_state;
4 int rotation_0, time_1, rotation_out_0;
5 mw_restore_task_state(7, &unit_state);
6 mw_read(16, &rotation_0);
7 mw_read(17, &time_1);
8 rotation_out_0 = ((rotation_0 * 425) / (time_1 - unit_state.delay200513));
9 unit_state.delay200513 = time_1;

10 mw_write(22, &rotation_out_0);
11 mw_save_task_state(7, &unit_state);
12 }

Listing 1. Code fornet_rotation.

B. Middleware configuration

The middleware can be configured using a file. It contains
an element hierarchy of nodes, tasks and data. Data identifiers
can be defined and assigned to the tasks they belong to, tasks
are sub-elements of nodes. TDMA slots can be assigned at
task level, i.e. all data belonging to one task will be sent in
the slot assigned to that task. Further, sensors and actuators
are assigned to nodes so that the middleware can perform
hardware access on the proper node. Sensor and actuator
elements are like data elements with some hardware specific
information, i.e. they also have identifiers for send / receive
operations. Additionally a TDMA slot has to be assigned to
hardware devices for sending values, because they operate
independent of tasks as shown in Figure 3.

With this configuration information, the middleware is able
to allocate buffer space during startup phase, initialize sensor
and actuator hardware for operation, and distinguish between
local and remote communication.

C. Sensors and actuators

Since a real-time system often has to interact with the
real world, there is a need to connect the tasks with sensor
and actuator devices. These devices can be attached to any
node in the system. The middleware provides functionality for
transparent handling of remote devices to all nodes. Therefore
sensor data is presented to the task like all other data, as
described in the previous section. That means every sensor
is assigned a unique identifier, the middleware is in charge of
polling the sensor in an appropriate cycle time and storing the
result with the identifier as a key. To make the data available
for remote nodes the distribution mechanism for data is used.

Writing data to actuator devices works similar. Data are
stored in the middleware and distributed. When the node with
the actuator device attached has to write a new value, it looks
up the data for the identifier associated with the actuator device
and writes it to the device. Sensor and actuator interaction
is completely handled by the middleware, tasks just have to
use the middleware’smw_send() andmw_receive() API
functions to write and read values.

As hardware device interaction is handled by the middle-
ware and not by tasks directly, there has to be a scheme when
interaction takes place, described in Figure 3. At the beginning
of a cycle the middleware first reads sensor devices at a defined
frequency. This means a sensor could be read every n-th cycle,
in all other cycles the last value read will be used. After sensor
values have been read and distributed, they are available to
all tasks on all nodes. In the end of the cycle, when all tasks
finished execution and all data are replicated to all nodes, each
node with an actuator connected looks for data with the ID of
the actuator in the buffer and writes that value to the hardware.

D. Global time

The employed TDMA bus protocol is realized using a global
time base. According to this global clock, each node can
determine the start of the slot assigned to it, as well as the
points in time data sent by other nodes in the system have
to be received. To achieve this, the protocol uses a clock
synchronization mechanism to maintain a consistent view on
the global time on each node.

For a time-triggered system, the dispatching of tasks is also
based on a global schedule. The middleware provides access
to the global time maintained by the bus protocol, featuring
themw_global_time() call.

E. Prototypical implementation

A prototype realizing the described functionality has been
implemented to show the viability of the described concepts. It
is based on the RTnet protocol developed by Kiszka et al. [18].
RTnet is based on the real-time operating system Xenomai1,
which comes as a patch for Linux systems, providing real-time
capabilities for the modified system. The Xenomai dispatcher
is charged with the execution of the middleware during the
hardware interaction phase, as well as the execution of the
application tasks.

RTnet provides a TDMA scheme analog to the one de-
scribed in Section IV-A. In order to accomplish the TDMA,
a clock synchronization mechanism is included in RTnet. Our
middleware uses this available time source as global time for
the system. The TDMA schedule for RTnet is constructed
according to the needs of the modeled software. As a lot
of embedded systems rely on the use of a bus rather then
a switched network, we use broadcast messages exclusively.

During our tests the prototype showed the desired behavior,
regarding timely sending and reception of messages, as wellas
storage of task states. For ease of testing, the configuration file
is currently coded in XML. To conserve the short resources of
an embedded system the file will be coded more efficiently in a
future version. Unfortunately RTnet is not capable of changing
the assignment of communication slots to nodes at runtime in
its current version. This function would be desirable in case
of a mode change of the system. It is subject to our current
work to find a solution for this shortcoming.

1www.xenomai.org



VI. CONCLUSION

In this paper we presented a middleware approach for use in
distributed embedded real-time systems. Compared to existing
alternatives, this middleware produces very few overhead but
at the same time provides flexibility to the applications using
it.

The defined API is well suited to be used in unattended
code generation and system configuration based on data-flow
models. The semantics of COLA are preserved during this
step, due to the time triggered scheme of the middleware.

It is subject to our current work to add a possibility for
modifying the TDMA slot to node assignment during runtime.
This would ease the calculation of feasible system schedules
as there would be no need to find a TDMA slotting valid for
all possible modes of the system.

Further we intend to extend the middleware’s functionality
to make error tracing possible. By using the event triggered
messages described in this paper, a possibility for distributing
notifications about a change in system state, without influ-
encing the system’s functionality, is given. Producing system
monitors during code generation, which use the concept of the
event triggered slots will be one of the next steps.

REFERENCES

[1] S. Kugele, M. Tautschnig, A. Bauer, C. Schallhart, S. Merenda,
W. Haberl, C. Kühnel, F. Müller, Z. Wang, D. Wild, S. Rittmann, and
M. Wechs, “COLA – The component language,” Tech. Rep. TUM-I0714,
Institut für Informatik, Technische Universität München, Sept. 2007.

[2] M. Broy, “The ’grand challenge’ in informatics: Engineering software-
intensive systems,”Computer, vol. 39, no. 10, pp. 72–80, 2006.

[3] D. C. Schmidt and F. Kuhns, “An overview of the real-time corba
specification,”Computer, vol. 33, no. 6, pp. 56–63, 2000.

[4] A. D. McKinnon, K. E. Dorow, T. R. Damania, O. Haugan, W. E.
Lawrence, D. E. Bakken, and J. C. Shovic, “A configurable middle-
ware framework with multiple quality of service propertiesfor small
embedded systems,” inNCA ’03: Proceedings of the Second IEEE
International Symposium on Network Computing and Applications,
(Washington, DC, USA), p. 197, IEEE Computer Society, 2003.

[5] D. C. Schmidt, “Middleware for real-time and embedded systems,”
Commun. ACM, vol. 45, no. 6, pp. 43–48, 2002.

[6] V. Subramonian, “Middleware specialization for memory-constrained
networked embedded systems,” 2004.

[7] A. S. Gokhale, D. C. Schmidt, T. Lu, B. Natarajan, and N. Wang,
“Cosmic: An mda generative tool for distributed real-time and embedded
applications,” inMiddleware Workshops, pp. 300–306, 2003.

[8] The MathWorks Inc.,Using Simulink, 2000.
[9] P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice, “Lustre: A declarative

language for programming synchronous systems.,” inPOPL, pp. 178–
188, 1987.

[10] F. Maraninchi and Y. Rémond, “Mode-automata: About modes and states
for reactive systems,” inESOP ’98: Proceedings of the 7th European
Symposium on Programming, (London, UK), pp. 185–199, Springer-
Verlag, 1998.

[11] P. Caspi, A. Curic, A. Maignan, C. Sofronis, S. Tripakis, and P. Niebert,
“From simulink to scade/lustre to tta: a layered approach for distributed
embedded applications,”SIGPLAN Not., vol. 38, no. 7, pp. 153–162,
2003.

[12] A. Bauer, M. Broy, J. Romberg, B. Schätz, P. Braun, U. Freund, N. Mata,
R. Sandner, and D. Ziegenbein, “AutoMoDe — Notations, Methods,
and Tools for Model-Based Development of Automotive Software,” in
Proceedings of the SAE 2005 World Congress, (Detroit, MI), Society of
Automotive Engineers, April 2005.

[13] A. Benveniste and G. Berry, “The synchronous approach to reactive
and real-time systems,” inReadings in hardware/software co-design,
pp. 147–159, Norwell, MA, USA: Kluwer Academic Publishers,2002.

[14] H. Kopetz, “The time-triggered architecture,” inISORC ’98: Proceed-
ings of the The 1st IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing, (Washington, DC, USA), p. 22, IEEE
Computer Society, 1998.

[15] W. Haberl, M. Tautschnig, and U. Baumgarten, “Running cola on em-
bedded systems,” inProceedings of the International MultiConference
of Engineers and Computer Scientists (IMECS 2008), 2008.

[16] H. Kopetz, Real-Time Systems: Design Principles for Distributed Em-
bedded Applications. Kluwer Academic Publishers, 1997.

[17] H. Kopetz and G. Grünsteidl, “Ttp - a protocol for fault-tolerant real-
time systems,”IEEE Computer, vol. 27, no. 1, pp. 14–23, 1994.

[18] J. Kiszka, B. Wagner, Y. Zhang, and J. Broenink, “Rtnet -a flexible hard
real-time networking framework,” in10th IEEE International Confer-
ence on Emerging Technologies and Factory Automation, Catania, Italy,
2005.


