A Middleware for Model-Based Embedded Systems

Wolfgang Haberl Jan Birke Uwe Baumgarten

Institut fur Informatik
TU Minchen
85748 Garching, Germany

Abstract—To deal with the increasing complexity of embedded number of nodes and applications, this approach is coresider
real-time systems the model-driven development approachds adequate. But in case of a failure during system specificatio
proven to be beneficial. The reduction of complexity achiewt by or programming, the impact on the system can be rather huge
the used models, which are often implemented using a graphat ')
modeling language, results in less faulty systems. In the worst-case, the change of an address can mean that

For model-driven development to be effective, the possitiiy — Software for all nodes has to be replaced, as the addresses ar
of human faults has to be kept as small as possible. This statically compiled in. Replacing the software for all nedie
gozl _Cahn be ﬂléaCZEd by lutili(zjiryg autgmr:t_tic tCOdde gTenelfaltiign the system is a time consuming and thus expensive procedure,
ana Is nence already employed In production toaay. lools H i H
Matlab/Simulink or ASCET-SD are examples of such efforts. es_?_ﬁgalg Ift nece;sarydfor I(;)ts of plrodlucet(:] unlttst.. .

Yet those tools lack the possibility of designing not only . IS €fiort can e_re uced Dy replacing elsa_lc communi-
as well as configuration data for the overall application. Tre programmed using the middleware API and logical addresses.
Component Language (COLA) [1] is intended to fill this gap. Mapping these logical to hardware addresses is done at run-
While generating application code for COLA models is similato tjme. Thus, if a communication link has to be changed, it

the mentioned tools, the code shall be deployed onto a didhted
system with as less manual interaction as possible. is sufficient to revise the mapping done by the middleware.

To enable for unattended deployment and efficient modificagn Additionally the middleware masks the heterogeneousity of
of the generated system, a transparent communication layer the underlying communication system and can offer addidion
is desirable. In this paper we present a middleware approach services like, for example, clock synchronization.
intended for use in automatic system deployment for COLA. Additionally the use of logical addresses and a static

Besides transparent communication the presented middlewa - . .
features additional services to the application like a clok communication APl eases the automatic generation of code

synchronization mechanism, storage of task states and mare @nd configuration of the overall system during a model-
The details about the middleware’s realization and its usedr driven development process. The technique of model-driven
a model-driven process are described in the paper at hand. development has become very popular during the last years,
as it decreases the degree of complexity presented to tle¢ dev
oper. Graphical programming languages, like the Component
Language (COLA) employed for examples throughout this
paper, are a commonly used concept to achieve this goal.
The middleware approach presented in this paper is intended
With the increasing usage of embedded systems in consurasra platform for embedded real-time systems generated from
products, these systems are responsible for the qualityoskt synchronous data-flow models.
products as well as for their failures. Today, an embedded
system often is a networked system consisting of many nodés, Related work
for example avionic systems, automotive systems and manyith the emerging interest in distributed embedded sys-
more. Actual premium cars are likely to use several differetems, several approaches for embedded middleware have been
bus types (e.g. CAN, Flexray, MOST, LIN, ...) connecting upresented. Many of those implementations rely on an object
to 80 controllers as described for example by Broy [2]. request broker (ORB) looking up communicating software
Due to the number of produced units, costs are considem@mponents during runtime, as proposed by the CORBA
a very important factor when choosing hardware. This leadpecification [3]. Examples for such approaches have been
to limited processing capacities of the system. The use midblished for example by McKinnon et al. [4], Schmidt [5],
performance consuming code, like richly featured netwo&ubramonian et al. [6] or in combination with the CoSMIC
stacks, is often omitted in favor of less computing poweool [7]. In comparison to these proposals, our approachsav
consumption. In many cases this leads to hard coding of nactEmputation time by abandoning the use of an ORB.
addresses in the communication calls used in applicatide.co The presented middleware is intended for use with the
As the built systems, for example for automotive appli€omponent Language (COLA) [1]. This graphical modeling
cation, are static throughout system lifetime, regarding tlanguage for embedded real-time systems features cotsstruc

Index Terms—Distributed embedded systems, real-time sys-
tems, model-driven development, middleware

|I. INTRODUCTION

similar to those of Matlab/Simulink [8] or Lustre/SCADE [9] A. Synchronous data-flow

Compared to these languages, it offers the benefit of formahp,e termsynchronousesembles to the hypothesis of perfect
semantics and the concept of operating modes respectivg%chrony described by Berry and Beneviste [13] and which
Modes are modeled using mode automata similar to thogeassumed for the temporal semantics of Lustre as well as
proposed by Maraninchi et al. [10]. COLA is intended fofor cOLA. According to this hypothesis, the computation of
the design not only of single software components or appfi e modeled tasks and communication between them happens
cations, but of complete systems. This bears the advant@gitely fast. This allows for a discretization of the tirbase.

of knowledge about the interaction of the modeled softwafig, s time is not any longer seen as a continuous value, but
components at runtime. Consequently every communicatignprogressiOn of distincticks Each of these ticks triggers
link needed is present in the model. Thus an object brokerijg execution of the modeled tasks. And, as mentioned, these
redundant. The configuration of the middleware can instegghks are instantly computed and return their results. fitts

be calculated offline. cedure is repeated cyclicly during runtime. The time-teig

B. Contribution paradigm is well suited to realize such a periodic execution

of tasks. This conforms to the model semantics as long as the

The presented middleware approach facilitates the ungly period is longer than the deadline specified for eack tas
tended deployment of data-flow models onto distributed emng data-dependencies are considered. The principles of an
bedded real-time systems. Compared to existing approachggnitecture for a time-triggered system have been intedu
it operates without looking up software components during, Kopetz [14].
runtime, thus saving a notable amount of computing time. g the stated assumption of zero delay cannot be fulfilled
Rather communication dependencies are extracted from g}ﬁa real system, special care is required to approximate the

given data-flow model and the middleware is set up accorgfpdel's semantics as closely as possible. We will go into the
ingly, using configuration files. This concept enables féird yeotails of this problem in Section IV.

(re-)configuration, e.g., when coding or updating software
components of the system, as well as it leaves open the COLA
possibility of reconfiguration during runtime. Examples floe We will exemplify our middleware approach using the
generated application code are presented in the paper. modeling language COLA throughout this paper. A COLA
model consists of software components communicating via
directed communication links, callechannels The compo-

The remainder of the paper is organized as follows: Theents are namednits In COLA several forms of units are
peculiarities of synchronous data-flow languages, and-esplefined (cf. [1]). Units of the typeasetwork and automaton
cially that of COLA which is used as example throughout thenay be decomposed hierarchically, that means, networks are
paper, are described in Section Il. In Section |1l we willga made up of several sub-units connected via channels, and an
short introduction into the challenge of unattended depleyt automaton’s behavior in a certain state is implementedgusin
of data-flow models. Section IV describes the concepts farunit as well. Automata provide a form of control-flow to
predictable and timely transmission of data in a real-timhe COLA language. An automaton decides, depending on its
environment. We will detail on the realization of the presen input values, which state to activate. Hence only one of the
concepts in Section V and will give a conclusion and look-ouwinits implementing its states can be active at a time.
in Section VI. This characteristic of automata can be used to define the
behavior of the system in a certain operating mode, for
activation and deactivation of a system feature. Figure 1

The presented middleware was designed to be part sffows a sample COLA automaton, which denotes that the
an execution platform for software tasks modeled usingt@o modes are changed each time timede input signal,
synchronous data-flow language. Examples for such languagessibly generated by pushing a button, is set to 1. Thereatu
are Lustre or COLA [1]. For Lustre an approach for modelingeferred to in the figure is a fictitious adaptive cruise cointr
and deploying systems has been presented in [11]. In contr@sCC) which will be used as example throughout this paper.
to the concepts of Lustre, the COLA language features the UHeis device is intended to keep a car at constant speed, while
of modes, which embody the execution of alternative sets wfaintaining a minimum distance to cars running ahead.
tasks. COLA modes are realized using automata as describeBesides the mentioned modeling constructs, COLA uses
in Section I1-B. basic arithmetic and logical operators, calfadctional blocks

The use of modes allows for ease of modeling of larger the implementation of the desired functionality. Aststh
systems, as presented by Bauer et al. [12]. At the same tibmefore, a synchronous data-flow model is executed periodi-
they cater for the generation of efficient system configarestj cally. In order to buffer values from one invocation to thetne
as a mode clearly defines the set of tasks to be execu@@LA provides aiming blockcalleddelay. A delay can store
during its activation. Thus no processing time is wasted farsingle value for exactly one tick of the model time.
the execution of tasks, whose results are not of intere¢tah t Data are put into and out of the system ussturcesand
mode. sinks These elements are the model representation of sensors

C. Organization

Il. DATA-FLOW MODELS

<net_ACC>

DEV_S.
c6
DEV_S.
’;
c5
DEV_S.
’;
c4
>

N
c3
’ DEV_S =
c2
’ DEV_S =
cl

Figure 2. A possible clustering for the ACC example

<atm_acc_on_off>
\ mode==

DEV_A
DISPLAY

{

mode==1

Figure 1. COLA mode automaton for an ACC

and actuators of the system in question.

As the actual state of automata as well as the values
stored in delays have to be preserved, each unit containing
these constructs is stateful. The storage of these values is
realized by the presented middleware approach, as dedcriRe L
: . . Local and remote communication
in Section IlI-A.

A basic function of each middleware is the provision of

C. COLA clusters communication mechanisms. For a clustered COLA model

When the functional design of the COLA software moddhis includes inter-cluster communication. The bordeesin
is finished, the units are sectioned into distinct groupssth Separating clusters are crossed by communication channels
groups are callegtlustersand form the model representatiof=ach such channel indicates a need for data exchange at
of an executable task. Thus each cluster is transformed ifgtime. This is one of the duties of our middleware. Every
one file of C-Code during code generation, as described Byannel is assigned a virtual address, which is insertea int
Haberl et al. [15]. When defining clusters on a hierarchyllev® appropriate middleware read and write calls during code
lower than the system’s top-level unit, the clusters’ paregeneration. The middleware distinguishes between locdl an
unit(s) lack the mapping to a software task. In order to covE#Mote communication, according to the placement of sender
the functionality of these parent units, they are inserted i and receiver. This information is taken from the configunati
one or more so callednode cluster All other clusters are data generated for each node.
referred to asworking clusters The mode cluster’s job is to Besides enabling for communication between tasks, the
decide on which mode, and thus which working clusters, shanddleware also provides data keeping for each statefil tas
be executed. An example for such a clustering is given fynchronous modeling languages assume tasks to be executed
Figure 2. The figure shows the top-level network of the Ac@eriodically. In COLA tasks containing either a delay or an
example to be sectioned into twelve clusters. While thetetss automaton are stateful. This state is kept by the middleware
c1 throughc11 are working clustersg12 is intended to be between the periodic invocations of the task. The needed mid
a mode cluster. It is implemented by the automaton shown@teware API calls are, again, inserted during code gererati
Figure 1. The units implementing the automaton’s states are
two additional working clusters. We will show some example8. Operation modes

of the code generated for the ACC example in Section V-A. As mentioned before, COLA allows for the definition of

For a clustering to be valid, all units must be contained in erating modes. Eaahode clustetriggers a set of clusters
cluster and each mode cluster must consist of COLA automgy%ich we callwo.rking cluster to be executed. During codé

exclusively. del . h q . h | eneration all clusters are transformed into executalslesta
Ina COLA model, units exchange data using channels. Thg .« “the activation of a mode, and all of its sub-modes,

inter-cluster communication is also given by these chamn% calculated by a task as well. We call such a task a
Each. chgnnel which connects u.nits. mapped to different clysyge-task Like all working tasks mode-tasks have to be
ter;, implies a need for commumc.atlon between these “fBJSteexecuted and consequently use the communication abitifies
This holds for all channels, that is the edges connecting the, iddleware. Compared tworking tasks mode-tasks do
clusters, depicted in Figure 2. It is one of the tasks of thgy \yrite any actuators directly, but calculate a value,ohhi
middleware to enable for this communication. indicates their decision on the mode to be activated. As the

middleware is the first instance to know about the result of

the mode-task, it is responsible for calling all workingkisis

We will give a short introduction into the middleware’sactivated by that mode. This minimizes the delay between the

functionality in this section. For detailed informationcath decision on the active mode and the execution of the first
the realization of the described concepts see Section V-A. working task.

IIl. M IDDLEWARE FUNCTIONALITY

C. Hardware interaction A. Communication network

In COLA several channels can be connected to a singlegys access to the communication network connecting the
output of a unit. If this unit is a source this indicates th&iea pgges of the system is controlled using a time division mleti
of a sensor to be used by two different software componenigcess (TDMA) strategy. That means, access to the network
Following the synchronous semantics of COLA, both soffy djvided into time slots. In each time slot only one node
ware components have to be provided with the same valyg.gjlowed to send data, all others may receive data during
Additionally the hypothesis of perfect synchrony assunhes tinat time. All slots together define the TDMA cycle. Figure 4
complete system to be executed in virtually no time. Thus dhows such a cycle, divided into five slots. Each node can
several sources are read or actuators are written, semangie assigned multiple slots, one for each task it executes. An
cl_aim this to happen instgntly. If_hardware would be acassgyample for this is shown in Figure 4 where two slots are
directly by each task, this requirement couldn’t be fullllle yeserved for node 0. The TDMA cycle is repeated periodically
as tasks have to be executed sequentially on each node of4hg should be chosen as long as it takes for the slowest node
system. to finish execution of all tasks. This allows for the definitio

To approximate the model semantics as closely as possijeq system wide scheduling cycle. Tasks which have to be

we chose_ to realize hardware interaction V|a_the middlewaggecuted more frequently can be involved several timesiguri
As the middleware uses a last value semantics, sensor valggsy, cycle.

can be read several times by different tasks. Each task will
then read the same value. By running all sensor reads at the

begin and all actuator reads at the end of each scheduling ‘4—132.”?—{ ‘ ‘
cycle, the moments of reading or writing the values are as

closely synced as possible. Figure 3 shows this invocation o
sensors, tasks and actuators during a scheduling cycle. Siot0 | Slot1 | Siot2 |Slot3 |Slot4
§<_middleware_> applications 4_middleware_,é
: running running running : Node 0 Node 0 Node 2
: : Task 0 Task 1 Task 0
C read sensors) C COLA tasks) C write actuators)
- scheduling cycle > Figure 4. TDMA scheme
Figure 3. Hardware interaction Two approaches for allocating time slots can be thought of.
One possibility is that each node in the system is assigned on
D. Global time time slot in each TDMA cycle, in which the node is allowed to

The realization of a time-triggered system relies on thseend data. The length of that time slot either depends on how

availability of a global time, as described by Kopetz [16his much data has to be sent by that node or the available amount
L ' . .. of time is simply divided by the number of communication
global time is used to start computation and communication oodes
the different nodes according to a globally defined schedul®) S .
Another approach of distributing slots would be to assign

Our middleware API contains a function providing access to ', | K. This leads of |

the global time. This function can be used by the node Ioc_%ltlme S|0t to ;‘VGI’IY task. IIS ?_a S % tu#:rs?j tlo mgriws ots

dispatcher to initiate execution of the different tasks. N a cycle and a longer cycle ume, but the delay between
finishing a task execution and distributing the produced dat

IV. REAL-TIME ENVIRONMENT can be shortened. Therefore task scheduling and TDMA time

The middleware is designed to offer communication seglots have to be aligned to minimize distribution delay,veho
vices for distributed hard real-time systems. Such a igad-t in Figure 5. For our middleware the latter option of assignin
system consists of several processing units equipped wittslats to tasks rather than to nodes is chosen due to it'segreat
processor, memory, a communication interface, and irdesfa flexibility in generating schedules and advantages corisigle
to interact with the environment. A unit with its dedicatedielay.
hardware is called a node of the real-time system. A protocol entitled Time Triggered ProtocolTTP) and

On each node several tasks can be executed. The interacsionilar to the TDMA scheme used for our middleware has
of local and remote tasks realizes the functionality of theeen proposed by Kopetz [17]. Compared to the middleware
system. In a real-time environment it is essential thatdasgresented here, the TTP assigns TDMA slots to nodes, not
finish execution within time, otherwise the produced resulapplications. In addition, the number of operating modesius
could be useless or even lead to failure. Tasks compétea system running the TTP is limited to eight instances. The
for limited computational resources provided by a node, bapproach presented here doesn't limit the number of modes
because of the a priori knowledge of task periodicitiesgtim(neglecting the fact, that the number of logical addresses i
static scheduling can be employed to meet deadlines. limited by the chosen data type).

<delayy about a half cycle time. Task 4 has to wait in either case,

l because the slots passing at execution time belong to node 2.
-l > i Note that TDMA slots cannot be shared between nodes.
TSiASX1| Each node that has to send event-triggered messages has to be
slot

provided with an own event-triggered time slot. If no event-

triggered communication occurs, these slots lie idle.
Figure 5. Delay between task termination and data distabut

V. OPERATION OF THE MIDDLEWARE

For transmitting data the middleware does not rely on bus
addresses of sender or receiver node. Instead every datum
There are two established approaches in real-time syste@gssigned a unique numerical identifier used as its logical

design, namely the time-triggered and the event-triggered a4dress. When a datum has to be transmitted to other nodes,
A time-triggered real-time system initiates actions lieeding it js passed to the middleware in combination with its logica
messages by the progression of time. The points in time Whg#lgress. Using this identifier, the middleware can detegmin
some action has to be carried out are defined offline a@ghich TDMA time slot has to be used for sending. As the
take place periodically. Event-triggered systems on therot Tp\vA cycle reaches the determined time slot, the datum with
hand do not have such static schedules. They observe j€igentifier is broadcasted over the network. The recgivin
environment and actions are triggered by the occurrence fges store the received datum with the identifier as its key.
some special event. Therefore event-triggered systemsreeq a|ready existing data with the same key are replaced with
dynamic scheduling because the event occurrences cannofeereceived data. Tasks on the receiving nodes are now able
known a priori. Primarily the middleware is designed to Handig retrieve the datum from the middleware by passing the
time-triggered messages. These periodic messages occujyéhtifier.
every cycle, their size is known a priory. So enough time The configuration for each node’s middleware instance is

in the TDMA cycle can be reserved to ensure successiydhieved by reading a configuration file during start-up.
transmission.

For the deployment of COLA models a time-triggere:’

B. Time-triggered / event-triggered messages

approach is preferred, as the perfect synchrony assumpt node ! node2
impli_es the pe_riodi_c ir_lvocatiorj of all tasks in_the s_yster (task1) (esk2) (tasks) (asks)
at discrete points in time. This matches the time-triggert |
paradigm well, which is also based on the cyclic activatic | sendiD42 receive ID42 receive D42 receive ID42
of tasks.

But in some cases it may also be convenient to send | Middleware | | Middleware

message because of a special event, for example to rea 4

some monitoring in case of errors. The occurrence of su
a message is exceptional, so the message is not assignt
designated time slot. In order to allow a limited number ¢
such event-triggered messages, an extra default time @lot
each node is defined. All messages that are not planned a
priori, and hence do not have a time slot assigned, are sent in
this event-triggered slot.

broadcast ID42 receive broadcast

Network

Figure 7. Send and receive data using the middleware

The scheme of two nodes communicating is shown in
Figure 7. Task 1 on node 1 sends data with identifier 42. The

< TDMA I > . . .

e data is stored in the middleware, task 2 on the same node has
| ET slot 1 |slot1 |slot2 | slot3| ET slot 2 |slot5 | slot6| TDMA slots immediate access. After the broadcast (WhICh m|ght be some
Cask1) C sz) (tasks) (ks) msksnode 1 LIMe later), the tasks on node 2 also have access to the data

sent by task 1.
A. Middleware API
Figure 6. Scheduling of tasks on different node To achieve a small and simple API, the middle-

ware only provides the basic functiomav_send() and
Figure 6 presents an example how slots and tasks couldrbe r ecei ve() . The data to send or receive is identified by
aligned. In the shown case time-triggered messages of tasthé logical address passed to the function as first argument.
would be delayed until the cycle reaches slot 1, but everithe second argument is a pointer to a variable the data are
triggered messages could be delivered immediately. On ttead from or written to. An example for the application of
other hand, time-triggered messages of task 3 can be siwse calls is shown in Listing 1, which depicts the code for
contemporary, event-triggered messages would have to wadrking clusterc8 of Figure 2. In lines 6 and 7 of the listing

the two input channels are read, while the result is written t As hardware device interaction is handled by the middle-
the output channel in line 10. ware and not by tasks directly, there has to be a scheme when
Reading and storing a tasks state is realized ligteraction takes place, described in Figure 3. At the bagm
using the calls nw restore task state() and ofa cyclethe middleware first reads sensor devices at a define
mv_save_task_state(). The usage of these calls isfrequency. This means a sensor could be read every n-th,cycle
shown in lines 5 and 11 in the listing. The functionsin all other cycles the last value read will be used. Afterseen
arguments are identical to those afw_send() and values have been read and distributed, they are available to

mv_r ecei ve(). all tasks on all nodes. In the end of the cycle, when all tasks
void net_r ot ati 0n200399() finished execution and all data are replicated to all noded) e

{ state_rotation200399 unit_state; node with an actuator connected looks for data with the 1D of
v festor o Cask.stare(7, Gt Siatd): the actuator in the buffer and writes that value to the hardwa

mv_read(16, & otation_0);
mw_read(17, &ine_1);
rotation_out_0O = ((rotation_0 * 425) / (time_1 - unit_state.del ay200513));

©CONOUAWNR

unit _state. del ay200513 = time_1; D G|Oba| t|me
10 mv_wite(22, &otati oniou_t _0);)
1y Meeve-teskstateln dnit_state); The employed TDMA bus protocol is realized using a global

time base. According to this global clock, each node can
determine the start of the slot assigned to it, as well as the
B. Middleware configuration points in time data sent by other nodes in the system have

to be received. To achieve this, the protocol uses a clock

The middleware can be configured using a file. It containgchronization mechanism to maintain a consistent view on
an element hierarchy of nodes, tasks and data. Data idesitifig,o global time on each node.

can be defined and assigned to the tasks they belong to, taslig,or a time-triggered system, the dispatching of tasks is als

are sub-elements of nodes. TDMA slots can be assignedyakeq on a global schedule. The middleware provides access

task level, i.e. all data belonging to one task will be sent B the global time maintained by the bus protocol, featuring
the slot assigned to that task. Further, sensors and auajfa gl obal _time() call

are assigned to nodes so that the middleware can perform
hardware access on the proper node. Sensor and actugto
elements are like data elements with some hardware specific
information, i.e. they also have identifiers for send / regei A prototype realizing the described functionality has been
operations. Additionally a TDMA slot has to be assigned ténplemented to show the viability of the described concepts
hardware devices for sending values, because they opetaf@ased onthe RTnet protocol developed by Kiszka et al. [18]
independent of tasks as shown in Figure 3. RTnet is based on the real-time operating system Xenpmai
With this configuration information, the middleware is abl&vhich comes as a patch for Linux systems, providing reaétim
to allocate buffer space during startup phase, initialzessr capabilities for the modified system. The Xenomai dispatche
and actuator hardware for operation, and distinguish betwes charged with the execution of the middleware during the

Listing 1. Code fomet _rot ati on.

r:’rototypical implementation

local and remote communication. hardware interaction phase, as well as the execution of the
application tasks.
C. Sensors and actuators RTnet provides a TDMA scheme analog to the one de-

Since a real-time system often has to interact with thseribed in Section IV-A. In order to accomplish the TDMA,
real world, there is a need to connect the tasks with sensoclock synchronization mechanism is included in RTnet. Our
and actuator devices. These devices can be attached to mydleware uses this available time source as global time fo
node in the system. The middleware provides functionatity fthe system. The TDMA schedule for RTnet is constructed
transparent handling of remote devices to all nodes. Toerefaccording to the needs of the modeled software. As a lot
sensor data is presented to the task like all other data, dissmbedded systems rely on the use of a bus rather then
described in the previous section. That means every sena@switched network, we use broadcast messages exclusively.
is assigned a unique identifier, the middleware is in chafge o During our tests the prototype showed the desired behavior,
polling the sensor in an appropriate cycle time and stottirgg tregarding timely sending and reception of messages, aswell
result with the identifier as a key. To make the data availabd¢éorage of task states. For ease of testing, the configarito
for remote nodes the distribution mechanism for data is .usésl currently coded in XML. To conserve the short resources of

Writing data to actuator devices works similar. Data aran embedded system the file will be coded more efficiently in a
stored in the middleware and distributed. When the node witiliture version. Unfortunately RTnet is not capable of cliagg
the actuator device attached has to write a new value, itsloake assignment of communication slots to nodes at runtime in
up the data for the identifier associated with the actuateicde its current version. This function would be desirable inecas
and writes it to the device. Sensor and actuator interactiofia mode change of the system. It is subject to our current
is completely handled by the middleware, tasks just have wwrk to find a solution for this shortcoming.
use the middlewaresw_send() andnw _recei ve() API
functions to write and read values. Lwww.xenomai.org

VI. CONCLUSION

(5]

In this paper we presented a middleware approach for use m
distributed embedded real-time systems. Compared tarexist
alternatives, this middleware produces very few overhasad bl7]

at the same time provides flexibility to the applicationsgsi

It

(8]

The defined API is well suited to be used in unattendetf]

code generation and system configuration based on data-flow

models. The semantics of COLA are preserved during thi)

step, due to the time triggered scheme of the middleware.

It is subject to our current work to add a possibility for
modifying the TDMA slot to node assignment during runtime11]
This would ease the calculation of feasible system schedule
as there would be no need to find a TDMA slotting valid for

all possible modes of the system.

[12]

Further we intend to extend the middleware’s functionality
to make error tracing possible. By using the event triggered

messages described in this paper, a possibility for digtrig

notifications about a change in system state, without infl}3]

encing the system'’s functionality, is given. Producingteys

monitors during code generation, which use the concepteof th4]

event triggered slots will be one of the next steps.

REFERENCES

[1] S. Kugele, M. Tautschnig, A. Bauer, C. Schallhart, S. &feta,
W. Haberl, C. Kuhnel, F. Mller, Z. Wang, D. Wild, S. Rittma, and
M. Wechs, “COLA — The component language,” Tech. Rep. TUM1),
Institut fur Informatik, Technische Universitat Murem, Sept. 2007.
M. Broy, “The 'grand challenge’ in informatics: Enginéeg software-
intensive systems,Computer vol. 39, no. 10, pp. 72-80, 2006.

D. C. Schmidt and F. Kuhns, “An overview of the real-timerica
specification,”Computer vol. 33, no. 6, pp. 56-63, 2000.

(2]
(3]

[15]

[16]
[17]

(18]

D. C. Schmidt, “Middleware for real-time and embeddedsteyns,”
Commun. ACMvol. 45, no. 6, pp. 43-48, 2002.

V. Subramonian, “Middleware specialization for memaognstrained
networked embedded systems,” 2004.

A. S. Gokhale, D. C. Schmidt, T. Lu, B. Natarajan, and N.nga
“Cosmic: An mda generative tool for distributed real-timmel@mbedded
applications,” inMiddleware Workshopsp. 300-306, 2003.

The MathWorks Inc.Using Simulink 2000.

P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice, “Lustr@leclarative
language for programming synchronous systems.P®PL, pp. 178—
188, 1987.

F. Maraninchi and Y. Rémond, “Mode-automata: Aboutdesand states
for reactive systems,” ilESOP '98: Proceedings of the 7th European
Symposium on ProgramminglLondon, UK), pp. 185-199, Springer-
Verlag, 1998.

P. Caspi, A. Curic, A. Maignan, C. Sofronis, S. Tripakasid P. Niebert,
“From simulink to scade/lustre to tta: a layered approactdfstributed
embedded applications3IGPLAN Not. vol. 38, no. 7, pp. 153-162,
2003.

A. Bauer, M. Broy, J. Romberg, B. Schatz, P. Braun, leufd, N. Mata,
R. Sandner, and D. Ziegenbein, “AutoMoDe — Notations, Mdtho
and Tools for Model-Based Development of Automotive Sofeyain
Proceedings of the SAE 2005 World CongréBetroit, Ml), Society of
Automotive Engineers, April 2005.

A. Benveniste and G. Berry, “The synchronous approazhegactive
and real-time systems,” ilReadings in hardware/software co-design
pp. 147-159, Norwell, MA, USA: Kluwer Academic Publishe2€02.
H. Kopetz, “The time-triggered architecture,” ISORC '98: Proceed-
ings of the The 1st IEEE International Symposium on Objeted
Real-Time Distributed ComputingWashington, DC, USA), p. 22, IEEE
Computer Society, 1998.

W. Haberl, M. Tautschnig, and U. Baumgarten, “Runnirggacon em-
bedded systems,” iProceedings of the International MultiConference
of Engineers and Computer Scientists (IMECS 20@8p8.

H. Kopetz, Real-Time Systems: Design Principles for Distributed Em-
bedded ApplicationsKluwer Academic Publishers, 1997.

H. Kopetz and G. Grinsteidl, “Ttp - a protocol for fatterant real-
time systems,IEEE Computervol. 27, no. 1, pp. 14-23, 1994.

J. Kiszka, B. Wagner, Y. Zhang, and J. Broenink, “Rtnatflexible hard
real-time networking framework,” ilOth IEEE International Confer-

[4] A. D. McKinnon, K. E. Dorow, T. R. Damania, O. Haugan, W. E.

Lawrence, D. E. Bakken, and J. C. Shovic, “A configurable reidd
ware framework with multiple quality of service propertiésr small
embedded systems,” iNCA '03: Proceedings of the Second IEEE
International Symposium on Network Computing and Appboat
(Washington, DC, USA), p. 197, IEEE Computer Society, 2003.

ence on Emerging Technologies and Factory Automation, riatdtaly,
2005.

